Cyborg Astrobiologist uses phone-cam to search for signs of life

mcguireA novel, hybrid part-human, part-machine visual system that uses a simple mobile phone camera has been developed to search for evidence of past or present life in planetary analogue sites on Earth. Patrick McGuire from the Freie Universität, Berlin, will present results from this Cyborg Astrobiologist at the European Planetary Science Congress in London on Monday 9th September.

Members of McGuire's team, which include researchers from the Freie Universität, West Virginia University, the Centro de Astrobiología in Madrid and the University of Malta have been working for over a decade towards giving more scientific autonomy to robotic rovers in choosing the most promising sites for geological and astrobiological investigation. In the Cyborg Astrobiologist system, initially the human astrobiologist takes images of his/her surroundings using a mobile phone camera. These images are sent to via Bluetooth to a laptop, which processes the images to detect novel colours and textures and communicates back to the astrobiologist the degree of similarity to previous images stored in the database.

"Over the years, our system has shrunk down from a camera on a tripod and wearable computer, to a small laptop and a phone-cam," said McGuire. "We are now working to speed up the image compression analysis and put the whole system onto a Smartphone – and eventually onto a Mars rover!"

The robotic rovers currently exploring Mars are heavily reliant on guidance from scientists back on Earth to detect areas that are most interesting for further analysis. The time delay in transmitting and receiving the commands can take between 4 and 24 minutes depending on the relative positions of Earth and Mars on their orbital paths. Exploration would be speeded up significantly if the rovers could identify autonomously unusual colours and textures created by geochemical or biological processes that may be a sign of past or present life.

Tests of the Cyborg Astrobiologist system have been conducted at field sites with similarities to landscapes that are found on Mars, imaging gypsum cliffs, red-bed sandstones, limestones, mudstones and coalbeds. Some rocks have been partly covered with lichen, a life-form that can possibly spread to/from other planets. Matching images with similar features in images from the database has been very successful.

"In our most recent tests at a former coal mine in West Virginia, the similarity-matching by the computer agreed with the judgement of our human geologists 91% of the time. The novelty detection also worked well, although there were some issues in differentiating between features that are similar in colour but different in texture, like yellow lichen and sulphur-stained coalbeds. However, for a first test of the technique, it looks very promising," said McGuire. These results of the Cyborg Astrobiologist’s field-work in West Virginia are currently under review for publication by the International Journal of Astrobiology.

IMAGES

1.            The Cyborg Astrobiologist in action in the recent West Virginia field test. On the left is a rocky outcrop, with spots covered with the yellow sporing bodies of lichens. On the right is another portion of the outcrop, which featured a coalbed with cleats. Credit: P.C. McGuire, A. Bonnici, R.A. Smosna, K.R. Bruner/Freie Universitat Berlin, West VirginiaU./CSIC-INTA/U. Malta/U. Chicago

http://www.europlanet-eu.org/images/stories/epsc2013/wv_tests_cyborg_astrobiologist.jpg

2.            Field tests in 2009 of the Cyborg Astrobiologist in Utah. Credit: P.C. McGuire, L. Wendt, B. Foing, C. Gross /Freie Universität Berlin, /CSIC-INTA/U. Malta/ESTEC/U. Chicago

http://www.europlanet-eu.org/images/stories/epsc2013/cyborg_astrobiologist2.jpg

3.            Results from the 2009 tests of the Cyborg Astrobiologist’s novelty detection system with the Bluetooth-enabled Phone-cam in Utah. (Left to Right): The 31st image was completely dull and familiar from a color point of view, so the novelty map was empty.The 40th image had a mudstone of dark brown color, which was the first time this color had been observed during these tests. Hence the dark brown mudstone was judged as novel in the novelty map.The 53rd image had some yellow and orange and green lichens in it, which the Hopfield neural network had no problem in deciding that they were novel features. Credit: P.C. McGuire, L. Wendt, C. Gross, A. Bonnici/Freie Universität Berlin,/CSIC-INTA/U. Malta/U. Chicago

http://www.europlanet-eu.org/images/stories/epsc2013/novelty_map_comparison.jpg

4.            Similarity match of yellow sporing-bodies of lichens from the 2013 West Virginia field tests. Credit: P.C. McGuire, A. Bonnici, R.A. Smosna, K.R. Bruner/Freie Universitat Berlin, West VirginiaU./CSIC-INTA/U. Malta/U. Chicago

http://www.europlanet-eu.org/images/stories/epsc2013/similarity-match-lichen.jpg

5.            Comparison of novel yellow sporing-bodies of lichen, compared to the platy rock texture previously seen. This example shows a case when the similarity score was rather low. Lower than 39% is considered to be low for this 2013 West Virginia field test. The computer agrees with the human geologists that the first-observed yellow lichen was indeed novel.

http://www.europlanet-eu.org/images/stories/epsc2013/novelty_match_lichen.jpg

CONTACTS

Patrick McGuire

Freie Universität,

Berlin, Germany

mcguirepatr@gmail.com

MEDIA CONTACTS

Anita Heward

EPSC 2013 Press Officer

anitaheward@btinternet.com

+44 7756034243

Oli Usher

Communications Manager

MAPS Faculty, UCL

o.usher@ucl.ac.uk

NOTES FOR EDITORS

About the European Planetary Science Congress (EPSC)

EPSC is the major European meeting on planetary science. EPSC 2013 is taking place at University College London (UCL) from Sunday 8 September to Friday 13 September 2013. It is the first time that the Congress has been held in the UK. The 2013 programme includes around 75 sessions and workshops. Details of the Congress and a full schedule of EPSC 2013 scientific sessions and events can be found at the official website: http://www.epsc2013.eu/

EPSC 2013 is organised by Europlanet, UCL and Copernicus Meetings and theevent is sponsored by the UK Space Agency, UCL, Astrium and the Science and Technology Facilities Council.

To celebrate EPSC coming to London, a ‘Festival of the Planets’ has been organised across the Capital in collaboration with partners including the Baker Street Irregular Astronomers, the Bloomsbury Theatre, the British Astronomical Association, the British Interplanetary Society, the Natural History Museum, the Open University, Queen Mary University of London, the Royal Astronomical Society, Royal Museums Greenwich and University College London.More information about the events can be found at:

http://www.europlanet-eu.org/epsc2013/outreach-activities

Follow #epsc2013 @epsc2013 @europlanetmedia on Twitter

About Europlanet

Europlanet is a network of planetary scientists, whose aim is to bring together the disparate European community so that Europe can play a leading role in space exploration. Europlanet’s activities complement the mission activities of the European Space Agency throughfield work at planetary-analogue terrains on Earth, laboratory measurements, computer modelling and observations from ground-based telescopes. Founded in 2002 and funded by the European Commission from 2005-2012, Europlanet has evolved into a community-based organisation that will carry on this work and plan for future missions and mission support.

www.europlanet-eu.org

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

UCL is among the world's top universities, as reflected by its performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Its annual income is more than £800 million.

www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV